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Failure mechanism in SMC subjected to
alternating stresses

B. VON BERNSTORFF, G. W. EHRENSTEIN '
Institute of Materials Technology, Kassel University, Wilhelmshoher Allee 73, D-3500 Kassel,
West Germany

Failure mechanisms in randomly reinforced sheet moulding compounds subjected to fatigue
testing were studied by relating the changes in characteristic mechanical properties to micro-
scopic changes in the material. It was demonstrated that various mechanisms take place sim-

ultaneously to an extent that depends on the local microstructure and strength and that the
collective interplay of these mechanisms is responsible for failure. As damage progresses, a
uniform pattern of cracks is formed in the matrix, and Mode Il fibre/matrix-interfacial failure
occurs, The mechanisms concerned can be explained by calculating the forces transmitted
between the fibres and the matrix. It was observed that different load amplitudes gave rise to
equivalent damage patterns in the material. In the light of this fact and with the aid of the
failure mechanisms identified, a method has been devised, by means of which the fatigue life
can be estimated of SMC exposed to alternating loads of any given amplitude.

1. Introduction

By virtue of their costs and their beneficial mechanical
properties, sheet moulding compounds (SMC) offer
an attractive alternative to conventional materials [1].
This is evident in new fields of application, e.g. auto-
mobile parts that have to withstand both static and
fatigue loads. Consequently, a deeper insight is required
into the number of stress reversals that can be endured
within a given time and the mechanisms involved in
order to design SMC parts of adequate reliability and
fatigue strength. The Wéhler method is usually adopted
for determining the behaviour of a material exposed to
stress cycles. The fatigue strength of metals and hom-
ogeneous polymers is governed by the propagation of
a single crack. The critical state in which unstable
crack propagation and failure occur can be uniquely
described by the length of individual cracks and can
also be predicted if the rate of crack propagation is
known.

In contrast to this, different forms of damage occur
alongside one another in heterogeneous materials, i.e.
multi-phase composites. They depend on the local
microstructure and strength, and the sum their contri-
butions leads to failure of the material as a whole. The
fatigue life of these materials can also be estimated if
the failure mechanism related to the number of load
cycles and a failure criterion that does not rely on the
stress history are known. Consequently, the failure
mechanism and the critical state at which failure
occurs must be expressed in terms of mechanical
properties by means of suitable test methods.

2. Fundamentals
In contrast to the formation of a single crack in hom-
ogeneous materials, various failure mechanisms occur
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in fibre-reinforced materials and they depend on the
values for the elongation at break of the individual
phases. A trivial case arises if the elongation at break
of the matrix, g, is equal to that of the fibres, g, and
failure is due to the formation of a single crack. For
different elongations at break, i.e. &g, < &g and
€pm > &g, 1t depends on the volume fraction of
fibres, Vi, whether one or more cracks is formed
in either the matrix or the fibres. Suppose that the
composite material consisting of two components is
subjected to an axial tensile load. The properties of the
two components are V|, E|, oy, &, and ¥, E,, 0p,, €55
respectively, and their cross-sections remain constant
over the entire length (Fig. 1). At low values of strain
in the range within which both components obey
Hooke’s law, the tensile stress applied to the composite
is given by

g =

ViEie + ViEse (M

Now let the load increase until the strain in the more
brittle phase is equal to the elongation at break. In this
case, if ey, > ¢&5,, the tensile strength of the composite
is

op = ViE &, + Vioy, 2

At the corresponding value of stress, the second phase
fails, with the result that its share of the load must be
borne by the first phase, which also fails if its tensile
strength, oy, is not high enough or its volume fraction,
V1, in the composite is too small, i.e.

op V) < E\Viegy, + o Vs (3)

Hence, despite the difference in the values for the
elongation at break, the entire composite fails owing
to the formation of a single crack over the whole
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cross-section of the specimen (Fig. 1a). However, if
the first phase had sufficient tensile strength, o,,, and
its volume fraction, V|, in the composite is large
enough, it withstands the additional load transferred
from the second phase, which has, in the meantime,
failed. As the load on the composite increases, the
more brittle phase progressively fragments, because
the strong bond between the two phases prevents
the complete stress relief that would otherwise result
from crack formation. Hence, if ‘the load is further
increased up to a point corresponding to the higher
elongation at break of the ductile phase, the low
elongation at break of the brittle phase will be exceeded
at several points in the composite. In this case, the
failure mechanism proceeds in two stages: multiple
crack formation in the brittle material (Stage 1)
followed by fracture of the entire composite (Stage 2)
caused by failure of the material with the higher
elongation at break (Fig. 1b) [2].

Stress—strain curves and the relationship between
the tensile stress at break for the composite and the
volume fraction of fibres are shown in Fig. 2 for
typical SMCs in which the elongation at break of the
matrix is less than that of the fibres, i.e. &g, < &g;. The
tensile stress at break for the composite, oy, can be
expressed in terms of ¥; by Equation 4

4)

where ¥, = 1 — ¥ s the volume fraction of the

,
oy = of Vi + gV

Figure 1 Possible fracture modes for composite
materials with different ultimate strains of the com-
ponents [2].

1.Stage

2.Stage

matrix and o7 is the stress in the fibres at the instant
when the elongation at break of the matrix is reached.

At higher values of strain, the matrix fails as a result
of multiple crack formation, and the strength of the
composite is governed solely by the still intact struc-
ture of the fibres, i.e.

6y = Oglt

()

Thus, as long as the matrix and the fibres share the
load, the relationship between the tensile stress at
break of the composite and the volume fraction of
fibres will be the straight line represented by Equation
4. Afterwards, when the strength of the composite is
governed solely by the fibres, because &g, < &g, the
relationship is given by Equation 3, i.e. the full line
shown on the right in Fig. 2 [3].

As in the tensile case, multiple cracking occurs in
fibre-reinforced composites that are subjected to alter-
nating stresses. The spacing of cracks in 45° layer of
laminate that had failed under tensile loading is com-
pared in Fig. 3 to that in the corresponding layer
stressed to failure in the fatigue test. The lower axis of
abscissae represents the number of load cycles in the
fatigue test; and the upper axis, the stress in the tensile
test. The amplitude of the alternating stress was
approximately 6 = 400Nmm™2, i.e. two-thirds of
the tensile stress at break determined in the tensile test.
Shortly before fracture occurred, the spacing between
cracks was the same in both cases [4]. Obviously, a
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Figure 3 Crack plane distance in a 45° layer of a [0, 90 £ 45]
laminate for (a) quasistatic and (O) fatigue loading [4].

maximum crack density exists for fibre-reinforced
composites which is characteristic of the material but
independent of the loading history. Because the crack
density can be correlated directly with the stiffness of
the specimen, Wurtinger and co-workers [5, 6] and
later on-Reifsnider et al. [7] proposed a stifiness-based
fatigue failure criterion as the failure limit for compo-
sites subjected to alternating stresses.

The stiffness and residual strength have been plotted
against the fatigue life in Fig. 4. The stiffness is
reduced in three different stages, which allow the
fatigue life to be divided into three ranges, each
characterized by a different failure mechanism [8]. In
the initial stage, which occurs early in the fatigue life,
the stiffness drops rapidly owing to the formation of
numerous transverse cracks in the matrix. A charac-
teristic damage state (CDS), represented by a given
pattern of cracks with uniform spacing [9], is reached
after a few load cycles. A unique relationship between
this characteristic damage state and the reduction in
stiffness has been verified for numerous types of
laminate [10].

In the second section of the curve shown in Fig. 4,
delamination occurs along with cracking in the matrix
[11] and the decrease in stiffness is merely slight.
Towards the end of this section, the crack density is so
high that no further cracks can be formed in the
matrix. In fact, the matrix cracks coalesce, and there
is a transition from multiple cracking to the formation
of a single macroscopic crack.
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The third section of the fatigue life curve is charac-
terized by the propagation of this single crack and
failure in the fibres associated with a pronounced
decrease in strength and stiffness and failure of the
specimen.

3. Materials investigated

The composition of the SMCs investigated was roughly
as follows (the percentages.represent mass fractions):
30% unsaturated polyester or vinylester resin (Palatal®
P 18 or Palatal® V 7740, BASF AG, Ludwigshafen);
30% randomly oriented, glass fibre rovings of 25 mm
length (Vetrotex P 233 textile glass rovings, Gevetex
Textilglas GmbH, Herzogenrath) and 40% finely
ground calcium carbonate (Millicarb®, Omya GmbH,
Cologne).

The resin also includes various additives such as
Solpren 312 (Philips Petrolen Company) for shrinkage
control, magnesium oxide for thickening, tertiary
butyl perbenzoate as catalyst, zinc stearate as
demoulding aid, and an impregnating agent. The lay-up
of the laminates, together with local glass fibre and
resin concentrations, is shown schematically in Fig. 5.

4. Dynamic properties of the materials
The aim of the study was to describe the complex
fatigue mechanism in SMC by correlating various
mechanical properties with the microstructural
changes. For instance, the change in stiffness is a
measure for the multiple crack formation during
fatigue loading; and the mechanical damping, tan ¢,
for the degree of damage in the material. If the material
displays linear viscoelastic behaviour, the angle, ¢, is
the phase shift between the exciting sinusoidal force
and the value measured for the deformation. If the
signals for the force and deformation are converted
into stresses and strains, Equations 6 and 7 apply for
the steady state,

g sin wt

a(t)
(1)

(6)
(7)
where 6 and £ are the stress and strain amplitudes.

If the sinusoidal stress and strain signals are
superimposed to eliminate time, an eclliptical o—¢

I

¢ sin (ot — @)

Figure 4 Stiffness reduction and residual strength for
fatigued composites [8].
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Figure 5 Schematic structure of SMC.
hysteresis loop is obtained
A 23172
g . &(t
o(t) = e(t) —cos ¢ + asin qb{l — [(T)} } (8)
£ g

If the relationship

o ) 1 = 0ford <o) < C
gsing <l — [ ==

& < O0forC < e(r) € A4

®

is positive for &(r) = & sin (wt — @), the sum of the
two terms in Equation 8 gives rise to the upper section
ABC of the stress—strain hysteresis®lcop. Likewise, if

the expression is negative, the lower section @will
be obtained (Fig. 6). Therefore, the same amounts
with respect to &(r) are added or subtracted. Hence,
the straight line represented by the first term of
Equation 8 halves the stress—strain hysteresis loop and
is referred to as the centre curve in the hysteresis loop
whose slope is a measure of the material’s stiffness.

Imagine that mechanical damping in a linear visco-
elastic material is gradually reduced to zero. In this
case, the stress—strain hysteresis loop will progressively
‘become more slender until, finally, the upper and
lower sections coincide with the curve in the centre. The
centre AC is obtained as the stress—strain curve for a
linear elastic material in the limiting case of Equation 8,
ie.

d

~

. T ——
o(t)= e(z.‘)—%cosap N

olt): 3§ sing {1—[“%}2 }1/2

Figure 6 Stress—strain hysteresis loop for linearly viscoelastic
material.

Hence, the vertically hatched area under the centre
curve in Fig. 6 is a measure of the energy, W, stored
in an element of volume while the material is being
subjected to alternating stresses, i.e.

+4 "
de = G&cos ¢

(1n

The energy per unit volume dissipated during a
complete load cycle, i.e. the loss energy, W,, is
obtained by integrating the area enclosed by the
hysteresis loop, i.e.

Wy = [ oe)de = gcosgbf

W, = §a(8)dg = 764 sin ¢ (12)
Then, the mechanical damping can be obtained by
expressing the loss energy, W, as a ration of the

storage energy, Wy, i.e.

n6E sin ¢

W =
L Ws 52 cos & 7 tan ¢

(13)

The dynamic characteristics for nonlinear viscoelastic
materials can also be derived from the nonelliptical
hysteresis loop by formally defining a centre curve that
halves the loop for each value of strain. In this case,
the area under the centre curve again corresponds to
the storage energy, W;; and that enclosed by the
hysteresis loop represents the loss energy, W, . The
ratio W [ W is again an expression for the mechanical

Figure 7 Stress—strain diagram of SMC and geometrical
evaluation of the knee point. S5 = specimen stiffness
at break. ¢, = 25.30Nmm™2, g = 0.19%, oy =

18 94.02Nmm~2, g = 1.61%, E = 13180Nmm™2,
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Figure 8 First stress—strain hysteresis loop.

5. Experimental details

5.1. Tensile test

In the stress—strain diagram obtained in the tensile test
on SMC, a pronounced knee occurs at 0.2% to 0.3%
strain. Above this knee point, the curve is flat and
almost linear, and the first signs of multiple cracking
in the matrix become evident. The number of cracks
then increases up to the point where the specimen fails
(Fig. 7).

In Fig. 7, steps have been formed in the flatter
branch of the stress—strain curve above the knee point.
These are intended to convey that the curve consists of
numerous small stress jumps. It is assumed that cracks
in the matrix of SMC are interrupted at the interfaces
with the bundles of glass fibre rovings. If the fibre
bundles are firmly bonded to the matrix and the crack
has to be propagated beyond the obstacle that they
present, they must stretch until an elongation is
reached that is large enough to permit further matrix
crack propagation. Because the matrix and the fibres
have different clongations-at break and moduli of
elasticity, much energy is required to effect these elon-
gations. Consequently, the fibres present an effective
barrier to the propagation of individual cracks and
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Figure 9 Stress—strain hysteresis loops for § > Oknee-
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Figure 10 (a) Stiffness and (b) damping for various stress amplitudes
as a function of number of cycles. Stress amplitudes (8,
Nmm=2):(a) £20, (®) +25, (W) 430, (x) +35, (a) +40,
(0) 50, (T0) + 60.

thus allow greater opportunity for the formation of
new cracks, i.e. multiple crack formation, in the ma-
trix. Hence, as the strain increases, the specimen be-
comes less rigid up to the instant of failure (cf. the
curves for the secant moduli shown by dotted lines in
Fig. 7).
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Figure 11 Crack length distributions as a function of fatigue time.
For comparison, the crack length distribution of a quasistatic
fractured specimen is also plotted.
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Figure 12 Multiple cracking of the matrix after N = (a) 1000 cycles and (b) 5000 cycles for ¢ = 30 N mm~2. Microsection of the y-z plane.

5.2. Tensile and compressive stress

The first complete cycle in the fatigue test was studied
in detail by reducing the rate of straining SMC during
tension and compression on a tensile tester.

If 6, < 0y, the stress—strain curves for the
material in tension and compression are symmetrical
about the origin. However, their shapes differ con-
siderably if ¢,,, < Oy, as demonstrated in Fig. 8.
First of all, a tensile stress roughly equal to 80% of the
tensile strength is applied to the specimen. As a result
of the microcracks formed in the matrix, the stiffness
is reduced, and the knee can thus be seen in the stress—
strain diagram. At about ¢ = 0.80, the load is
removed from the specimen (Position 1). The residual
strain (Position 2) remains until it is cancelled by the
subsequent compressive load. As the compressive
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stress increases until the strain is in the range ¢ < 0,
the matrix becomes more rigid again, with the result
that an initially hardly discernable discontinuity
occurs in the stress—strain diagram. At a compressive
stress of ¢ = —0.80 (Position 3), the load on the
specimen is again relieved. The stress—strain curve
then runs in the direction of the origin, but its slope
decreases at ¢ < 0. Hence, in the unstressed state after
the first complete load cycle (Position 4), the specimen
is elongated, and the hysteresis loop remains unclosed
until the tensile load in the next cycle is applied
(Position 5). In this case, there is no knee in the curve
for the repeated tensile cycle.

Thus, in the first complete tension/compression
cycle, three changes that significantly affect fatigue
occur in the hysteresis loop: the shift from the origin
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Figure 13 Final crack pattern of a fatigued ((a) 6 = 30N mm~?) and (b) a quasistatic fractured specimen. Microsection of the y~z plane.

in the direction of positive values of strain, the occur-
rence of a discontinuity in the compression section,
and the absence of the knee in the tension section.

5.3. Fatigue test
The first and last hysteresis loops determined before
failure under an alternating of 6 = + 50 Nmm” are
shown in Fig. 9. After N = 250 load cycles, the
hysteresis loop shifts from the origin in the direction
of positive strains, and the discontinuity in compression
is observed at ¢ = 0. The differences in tensile and
compressive stiffness increase up to the point of failure
and accentuate the discontinuity.

Fig. 10 shows the stiffness reduction and mechanical
damping of SMC for various stress amplitudes as
functions of the number of loads cycles. In anticipation

of the results of fractographic analysis, it can be said
that the steady decrease in stiffness within a tension
cycle can be ascribed to a continuous increase in the
crack density. A striking fact is that the specimen does
not fail until the ultimate stiffness falls below the value
measured in the tensile test.

The damping curves start to rise at low values of
stress amplitude. They pass through a maximum at an
amplitude slightly higher than the static tensile knee
stress 6 2 Oy,., and decrease again for higher
amplitudes. In the initial stages, the loss energy per
cycle outweighs the storage energy and the damping
increases. Afterwards, owing to the low slope of the
hysteresis curve, the storage energy increases more
than the loss energy and causes a decrease of the
damping.
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Figure 14 Force transformation by shear stresses in the matrix/fibre
bundles interface.

5.4. Fractographic studies

Multiple cracks were formed on the surface of all the
SMC specimens that were subjected to alternating
stresses. The cracks were counted and measured, and
their length distribution was plotted against the number
of load cycles. The crack length distribution of a
specimen that had failed in the tensile test was included
in the diagram (Fig. 11). No change occurs in the
shape of the distribution curves but the number of
cracks increases and therefore, the endurance of SMC
is largely governed by the formation of new cracks and
not by the propagation of a few cracks. Furthermore,
a comparison of the length distributions for specimens
that had failed under static and dynamic loads gives
rise to the assumption that alternating stresses increase
the number of cracks to that of statically fractured
specimens.

The following diagrams show y-z sections through
an unsaturated polyester SMC subjected to alternating
stresses, i.e. after N = 1000 and 5000 load cycles
(Fig. 12) and after fatigue failure (Fig. 13a). A section
through a specimen that had failed in the tensile test
is shown as a comparison (Fig. 13). Wherever the
thickness of the matrix between the layers of fibres
remains constant over large areas, the crack spacing is
uniform. Thick layers of matrix give rise to large crack
spacings; and, conversely, thin layers of matrix, to
very close crack spacing.

A comparison of the diagrams reveals a feature of
fatigue failure: the number of cracks in the matrix
increases and the uniform spacing between the cracks
becomes closer to the same extent as that of a
specimen that has failed in the static tensile test.

6. Failure mechanisms

It was demonstrated in Fig. 1 that, if the elongation at
break of the fibres was different from that of the
matrix and if the volume fractions of the two phases
were given, redistribution of forces would give rise to
multiple cracking. Because the redistribution is caused
by the transmission of shear stresses in the matrix/
fibre interface, the shear strength of the interface
evidently governs the spacing between the cracks in
the matrix [12].
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If an external load is applied, the difference between
the stiffness of the matrix and that of the layer of fibre
bundles gives rise to shear stresses in the interface
(Fig. 14). In each increment of interface dy, these
shear stresses transmit a force dF from the layer of
fibre bundles into the matrix, where dF is given by

dF = 2ctdy (14)
Cracks occur in the matrix if the force F
F = 20p,dc (15)

is exceeded.

As a result of the cracks in the matrix, the com-
ponent of load supported by an element of area in the
matrix must now be borne in the form of an additional
stress, Ao, by the layer of fibre bundles. In the plane
of the cracks, this additional stress attains a maxi-
mum, Ag,, given by

g U'Eb
Vo Esmc

Aoy, = (16)
where ¢ is the externally applied stress, E, is the trans-
verse isotropic modulus of elasticity for the layer of
fibre bundles, and Egy,¢ is the modulus of elasticity for
the entire SMC composite.

As the distance y from the plane of the crack
increases, the additional stress, Ao, decreases in pro-
portion to the extent to which it is retransmitted by the
interfacial shear stresses from the layer of fibre bundles
into the matrix (Fig. 14). According to a modified
shear Jag theory for elastic coupling between the
matrix and the bundle of fibres, Equation 17 applies
for the additional stress

Ac = Acg,exp (—®'?y) 17
where the constant ® is given by [13]

The shear stress in the interface is derived from the
equilibrium of forces acting on an element of volume
in the layer of fibres, i.e.

tcdy = Acbc — (Ao + dAo)bc

or
(19)

Differentiating Equation 17 and inserting Equation 19
gives the relationship for the shear stress, i.c.

bAG,®" exp (— ®'2y) (20)

T =

Inserting this expression for the shear stress in Equation
14 then gives the force

dF = 2cbAc,®'"” exp (— ®'2y)dy

transmitted per increment of interface.

By integrating, the force retransmitted into the
matrix is obtained as a function of the distance, y,
from the plane of the cracks

F = 2chAc[l — exp (—®'"2y)] Q1)



Figure 15 Multiple crack formation in the matrix layer under
increasing tensile force.

The curve for the force retransmitted into the matrix
is shown in Fig. 14, Because the load in the matrix
increases with the distance from the plane of cracking,
further cracks are formed mid-way between those
already existing when the force in the matrix exceeds
205, dc, and hence with Equation 21.

205, dc = 2chbAcy[l — exp (—®'y)] (22)

According to Equation 16, the additional stress, Agy,
in the fibre bundles increases with the externally
applied tensile stress, g. Thus the number of cracks
formed between those already existing in the matrix
continues to grow, with the result that, according
to Equation 22, the spacing y =1 in the pattern
of equidistant cracks becomes continuously closer

(Fig. 15):
1 Opnd

As the externally applied load increases, the forces
that are caused by shear stresses and are transmitted
by the matrix/fibre bundle interface become progress-
ively larger. If the shear stresses exceed the interfacial
shear strength before the retransmitted forces become
large enough to overcome the tensile strength of
the matrix and thus to initiate new cracks, the inter-
face will fail by delamination of the fibre bundles from
the matrix [14, 15]. According to Equation 20, the
maximum interfacial shear strength, i.e. the origin of
delamination, occurs at y = 0 in the plane of crack
formation and is given by

Toae = DAG, D" (24)

As opposed to this, the forces retransmitted from the
fibres into the matrix attain a maximum at y = +1/2
(cf. Fig. 15). The interfacial shear strength then follows
from the equilibrium of forces according to Equations
14 and 15, i.e.

2
Tmax - = O-Bm'l_d (25)

Accordingly, the ratio 2d// of the matrix thickness to
the crack plane spacing is constant throughout the
entire material. This can be easily verified in Figs 12
and 13. It can also be seen from Fig. 13 that the
spacing between the crack planes is larger in thick
than in thin layers of the matrix. However, if the
strength of the matrix is the same but the cross-

Matrix

/’_—
Matrix O
Fibre bundles

Fibre bundles S

Interface failure

max” 9Bm 7~

Figure 16 Interfacial failure in the thick and multiple cracking in the
thin matrix layer for increasing tensile forces.

sectional area is less, the forces that can be endured are
correspondingly less. Because the forces retransmitted
by shear forces into the matrix are independent of the
matrix thickness, they exceed the strength of the
matrix in thinner layers

tlc > op,2dc

and thus initiate further cracking. However, the maxi-
mumn forces that can be endured in thicker layers of
matrix remain greater than the forces retransmitted
along the interfaces

tle < oy, 2dc

and interfacial failure occurs (Fig. 16).

Obviously, different failure mechanisms occur sim--
ultaneously if quasistatic stresses are applied. They
differ according to the thickness of the layer of matrix:
in thick layers, the ultimate crack spacing is first
reached, and subsequently applied tensile stresses then
delaminate the fibre bundles from the matrix. In thin
layers of matrix, the crack spacing becomes increasingly
less until a minimum is reached at 2d// = t/oy, and
interfacial failure occurs.

The fact that different failure mechanisms proceed
simultaneously provides the key to clarifying the pro-
gressive formation of multiple cracks in the fatigue
test with loads of constant amplitude. The ratio 2d/!
between the thickness of the matrix layer and the
crack plane spacing was measured from a broken
spectmen. Fig. 12 shows that even for a short-time
fatigued specimen the minimum possible spacing
between the crack planes was already reached in a few
thick layers of the matrix. On further application of
fatigue loads, interfacial failure due to matrix/fibre
delamination originating from the crack planes occurs
in these matrix layers. Owing to the difference between
the stiffness of the fibre bundles and that of the layers
of the matrix in SMC, Mode II alternating shear
stresses delaminate the matrix from the fibres to an
extent depending on the number of load cycles.

The more this delamination progresses along the
layers of fibres, the less is the share of the force trans-
mitted by the fibres (Fig. 17b) and the greater the
stresses in the remaining cross-section (Fig. 17a). As a
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Figure 17 Progressive matrix/fibre bundle delamination in the thick
matrix layer causes increasing-stresses and multiple cracking in the
thin matrix layer depending on the number of load cycles for fatigue
loading.

result, multiple cracks are formed in the narrower
layers of the matrix. The progressive interfacial failure
is responsible for a continuous increase in the stresses
acting in the remaining cross-sections and leads to
further crack formation in the matrix with a decrease
in the spacing between the crack planes. Finally, the
minimum spacing will also be reached in the narrower
layers of the matrix, with the result that these will also
undergo interfacial failure.

Thus the failure caused by continued fatigue loading
traverses the entire specimen. It assumes the form of
multiple cracks that are first formed in the thicker
layers of the matrix and arc then displaced into
progressively narrower layers.

7. Conclusions

The failure mechanisms that occur in cyclic loading
are the formation of multiple cracks in the matrix,
interfacial failure, and progressive delamination of the
fibre bundles from the matrix. The only one among
them that is a fatigue mechanism is progressive
delamination, in which the delamination front is
lengthened in increments during each cycle of Mode I1
alternating stress. Although different failure mech-
anisms can be assigned to progressive delamination
under quasistatic and alternating stresses, that respon-
sible for fatigue is the formation of multiple cracks.
The reason for this is evident from the structure of the
SMC: in view of the great differences in thickness of
the matrix layers, interfacial failure followed by pro-
gressive delamination always occurs only in those
layers that have already become saturated with multiple
cracks. As the fatigue load is prolonged, the layers of

matrix that are traversed by multiple cracks become
narrower and narrower until the equidistant crack
spacing in them becomes a minimum, i.e. the crack
density reaches its maximum. It is not until this point
is reached that interfacial failure with progressive
delamination can set in. This consecutive mechanism
was derived from the case of quasistatic stress and is
responsible for the fact that a constant layer-thickness/
crack-spacing ratio of 2d// also applies to SMC
specimens subjected to alternating stresses. Conse-
quently, the effects of the failure mechanisms on the
pattern of cracks and thus the stiffness of the specimen
at failure are the same in both cases (cf. Fig. 13).

Owing to this equivalent relationship between the
stress and the number of load cycles, neither the stiff-
ness nor the pattern of cracks allows a conclusion on
whether damage in SMC specimens has been caused
by quasistatic or alternating stress. A similar equiv-
alence exists between the stress amplitude and the
number of load cycles in fatigue tests in which the
stress amplitude is varied. As a result, the same state
of damage as that reached after very long endurance
periods can be achieved by superimposing a number
of shorter fatigue tests in which the stress amplitude is
progressively increased. Because the stiffness steadily
decreases during the fatigue test, the individual stiff-
ness/stress amplitude curves (cf. Fig. 10) can be shifted
and arranged in sequence with respect to the reference
amplitude along the axis for the number of load cycles.
By this means, a master curve can be drawn for the
stiffness of a specimen subjected to alternating stresses
up to failure (Fig. 18). A master curve compiled in a
similar manner for the mechanical damping has been
included in the diagram.

Another conclusion that can be drawn from the
equivalent relationship between the stress and the
number of load cycles is that the secant modulus
passing through the point of failure in the tensile
stress—strain diagram is a suitable stiffness failure
criterion for SMC specimens subjected to alternating
stresses. In Fig. 19, an example is shown of a master
curve in which the limiting stiffness for the secant
modulus criterion has been included.

The three fatigue phases can be readily followed
over the entire length of the curves for the stiffness and
mechanical damping. The first phase consists of the
incipient formation of multiple cracks up to the
characteristic damage state (CDS), which is charac-
terized by a pronounced decrease in stiffness and in
the corresponding damping maximum. In the second
phase, the stress in the specimen gradually increases

6
log No. of cycles
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Figure 18 Construction of stiff-
ness and damping master curves
for fatigued SMC. Data taken
from Fig. 10.
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continuation of multiple crack formation, which is
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